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The Second-Order Tune Shift with Amplitude

for Octupole-induced Resonances in Storage Ring

The purpose of this note is to analyze the octupole-induced resonances,

to lowest order, in a synchrotron and storage ring. When the Hamiltonian

with octupole term is transformed to action-angle variables, it is found that

the amplitude-dependent tune shift terms are composed of two types: terms of

second-order in betatron oscilation ampliude of a particle and terms of fourth-

order in oscilation amplitude. Obtaining fourth-order terms requires complicated

analysis even with the first-order perturbation theory employed. Treatment of

this analysis wil be the subject of a subsequent note. Second-order terms are

straightforward and simple to calculate, and therefore we treat them here first.

The Hamiltonian for a general octupole field in a storage ring is given by:

eAs 1 r ß3By .ß3Bx . 4Hi = - = --B ~e (-ß 3 + i-ß 3 )(x + iy) Jc 4. p x y (1 )

where As is the vector potential and Bp is the magnetic rigidity.

Normal octupole component:

1 ß3B
Hi = _--(x4 _ 6x2y2 + y4)

24Bp ßx3 (2 )

Skew octupole component:

1 ß3 Bx 3 3Hi = --(x y-xy)
6Bp ßy3 (3)

Total scaled Hamiltonian, including both quadrupole and normal octupole terms,
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is then given by :

2 K X2 p2 K 2 BII
H = Px + ~ + -- + ~ + -(X4 _ 6x2y2.. 4)2 2 2 2 24B piy , (4 )

where BII = ß3 By/ßx3.

The equations of motion corresponding to the octupole term are:

Blll
!:x' = __(x3 - 3xy2)

6Bp
Blll!:yl = -(3x2y _ y3).
6Bp

(5 )

We now perform the canonical transformation to action-angle variables via the

generating function:

x2 y2
F(x,y,~x,~y;s) = --ß (tan~x + ax) - -ß (tan~y + ay), (6)2 x 2 y

where a and ß are the usual Twiss parameters:

1 dßza ----z - 2 ds '
daz
ds = ßzKz - iz

;z = x,y. (7)

The old variables can then be expressed in terms of action and angle variables,

z = J2ßzJz cos ~z,z ý2 ( 8 )
pz = - ßz (tan ~z + az) = - ßz cos ~z(tan ~z + az).

It is easy to see that the actions Jx and Jy are constants of the motion for the

unperturbed Hamiltonian. They are given by:

J _ (ßzpz + azz)2 + z2z - 2ßz Ez--,
2 (9 )

where Ez is the emittance of a beam in the z-plane. The new Hamiltonian is then
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determined from

h = H + ßF(x, y, ~x, ~y)
ßs ( 10)

As a result, the linear term of the new Hamiltonian is

ho = Jx + Jy
ßx ßy (11)

and the octupole term is

BIIh ( 4 2 2 4)i=-x-6xy+y24Bp
BII

=-¡(2ßxJx)2 cos4 ~x - 6(2ßxJx) (2ßyJy) cos2 ~x cos2 ~y24Bp

+ (2ßyJy)2coS4~yJ = V(Jx,Jy,~x,~y;s).

(12 )

By using

cos4 ~z
cos 4~z cos 2~z 3
8 + 2 + 8

cos 2~z + 1

2

(13 )
cos2 ~z

and

1
cos2~xcos2~y = 2¡cos2(~x + ~y) +cos2(~x - ~y)J (14 )

V can be rewritten as:

Bil
V(J,~; s) = -lß;J;(cos 4~x + 4cos 2~x + 3)

48Bp

- 6ßxßyJxJyf. cos 2( ~x + ~y) + cos 2( ~x - ~y) + 2 cos 2~x (15)

+ 2 cos ~y + 2 J + ß; J; (cos 4~y + 4 cos 2~y + 3) J.

In the above equation, the terms that are independent of ~ introduce the

lowest-order tune shift with amplitude (which is the second-order in oscillation
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amplitude). The ~ -dependent terms are then the object of the canonical pertur-

bation theory, which leads to the fourth-order tune shift with amplitude. This

wil be described in a subsequent note. Here we consider the ~-independent terms

only.

BII Bil BIIV; - _ß2 J2 - -ß ß J J + _ß2 J20- 16Bp x x 4Bp x y x y 16Bp y Y' (16 )

From this we can directly extract the tune shifts, which are given by

ßVo BIll 2 BIf
27fßvx =-a = +-B ßxJx - -B ßxßyJyJx 8 P 4 P

avo Bil BII 2
27fßvy =ßJ = --B ßxßyJx + -ßyJy.y 4 P 8Bp

( 17)

In order to relate the above expressions to those given by Collns l1J, who reached

the same formula by a different approach, we define:

BII Bil i
m = _ß2 = -i5(s - Sk)ß2- 6Bp x 6Bp xBII Blll
m == 6Bpßxßy = 6Bp i5(s - Sk)ßxßy

BIll Bil i
iñ == _ß2 = -i5(s - Sk)ß26Bp y 6Bp y

(18 )

and

a2 = 2Jx, b2 = 2Jy (19 )

Finally, summing over all the octupoles around the ring, we have:

27fßvx = a2(3/8)Em - b2(3/4)Em

27fßvy = -a2(3/4)Em + b2(3/8)Eiñ
(20)
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